
4.3  Nucleophilic Subs@tu@ons (SN1, SN2)



Nucleophilic Subs@tu@ons (SN Reac@ons)
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• nucleophile (electron pair donor) reacts at an electrophilic center (electron pair acceptor) 
• nucleophile replaces the leaving group (which takes an electron pair with it)
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SN1 Reac@ons



SN1 Mechanism: Rate-Determining Step is Unimolecular
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• departure of the leaving group generates a carboca@on as a true intermediate 
• first step is rate-determining, monomolecular, depends only on star@ng material 
• good leaving group, stabilized carboca@on accelerate reac@on (Polanyi principle!)
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SN1 Mechanism: Loss of Stereochemical Informa@on
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• departure of the leaving group generates planar, achiral, sp2-hybridized carboca@on 
• aNack of the incoming nucleophile can occur from any side with equal probability 
• product s@ll contains a stereocenter, but is formed as a racemic mixture

• if the electrophilic center is a stereocenter, and the star;ng material is a pure enan;omer:

R1
C LG

R2 R3

R1
CNu

R2R3

+
R1

R2
R3

sp3 sp3sp2

LG–

Nu+

R1
C Nu

R2 R3

sp3

or

racemic mixturepure enan@omer planar, achiral



Analogy of SN1 Reac@ons and Acid-Base Reac@ons
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• pKA values are a measure of the strength of a Brønsted acid 
• the lower the pKA value, the more is the equilibrium on the side of the dissociated ions 
• pKA values of corresponding acids are measure for leaving group quality (lower is beNer)

• SN1 reac;ons are ca;on-anion dissocia;on reac;ons very similar to acid-base reac;ons
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Leaving Group Quality
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• residues that correspond to acids with pKA < 0 are excellent leaving groups 
• residues that correspond to acids with pKA < 10 are good leaving groups 
• residues that correspond to acids with pKA < 20 are poor leaving groups 
• residues that correspond to acids with pKA > 20 are not leaving groups at all under any circumstance

• leaving group quality is approximately inverse to the basicity of the corresponding anion 
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Trivial Names and Abbrevia@ons of Important Leaving Groups
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Stabiliza@on of the Carboca@on Intermediate by Electron Delocaliza@on
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• if leaving groups are in allyl / benzyl posi@ons, SN1 reac@ons are very likely

• stabiliza;on of allyl / benzyl carboca;ons by electron delocaliza;on by resonance (+M effect)
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Stabiliza@on of the Carboca@on Intermediate by Hyperconjuga@on
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• the higher subs@tuted the electrophilic center, the beNer stabilized is carboca@on

• stabiliza;on by interac;on of the carboca;on 2pz AO with neighboring σC–H MO (matching symmetry) 
• corresponding interac;on with an;bonding σ*C–H MO negligible (non-matching symmetry) 
• “three-center bond”, dona;on of electron density to electron-deficient carboca;on
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Stabiliza@on of the Carboca@on Intermediate
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• SN1 reac@ons very favorable in benzyl or allyl posi@on (in par@cular with donor atoms) 
• SN1 reac@ons also observed on highly subs@tuted sp3 carbons 
• SN1 reac@ons never observed in phenyl posi@on (or other sp2 or sp hybridized carbons)

• carboca;on intermediate is electron-deficient, stabilized by electron-dona;ng groups (+M, +I)
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Examples of SN1 Reac@ons
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SN2 Reac@ons



SN2 Mechanism: Rate-Determining Step is Bimolecular
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• aNack of the nucleophile cannot result in a stable intermediate (pentavalent carbon!) 
• SN2 reac@ons are single-step reac@ons that pass through a “pentavalent” transi@on state  
• rate-determining step is bimolecular, favored by good nucleophile and electrophilic center
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Molecular Oribtal View of the Reac@on and the Transi@on State
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• nucleophile electron pair interacts with the empty, an@bonding σ* orbital of the C–LG bond 
• back-side aNack required, and concerted departure of leaving group inevitable 
• “early” transi@on state (similar to star@ng material; Hammond) avoids “pentavalent” state  
• good nucleophile (high energy electron pair) and decent leaving group will favor SN2 reac@on

• “pentavalent” transi;on state possible because of simultaneous bond forma;on and cleavage
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Stereochemical Inversion During the SN2 Reac@on
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• nucleophile & leaving group on opposite sides of the electrophilic center (back-side aNack!) 
• transi@on state has “trigonal-bipyramidal” geometry, R1–R3 in same plane, flip to other side 
• stereochemical informa@on preserved but stereoinversion (Walden Umkehr)

• if the electrophilic center is a stereocenter, and the star;ng material is a pure enan;omer, the 
stereochemical informa;on is preserved during the SN2 reac;on
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Nucleophilicity
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• nucleophilicity is a kine@c parameter, while basicity is a thermodynamic concept 
• all nucelophiles are bases, but not all bases are nucelophiles (“non-nucleophilic bases”)  
• trends are clear but no simple nucleophilicity scale (different from leaving group quality)!

• determina;on of rela;ve nucleophilicity n according to Pearson: 

Pearson et al., J. Am. Chem. Soc. 1968, 
90, 3319.
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• nucleophilicity increases with polarizability, decreasing electronega;vity (against basicity)

• anionic nucleophiles stronger than neutral ones; nucleophilicity decreases with steric hindrance



Examples for SN2 Reac@ons
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• if reac@on proceeds via an SN2 mechanism, the stereochemistry must be respected!

• Williamson synthesis of ethers
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Does the Nucleophilic Subs@tu@on Follow the SN1 or SN2 Mechanism?
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• if you decide for a mechanism, give the arguments for your choice 
• consider explicitly the stereochemical consequences (also in nomenclature of the products)

• consider leaving group quality, stabiliza;on of the carboca;on, and nucleophile
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Learning Outcome
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• assign the roles of nucleophiles and electrophiles 

• formulate nucleophilic subs@tu@on reac@ons 

• es@mate leaving group quality from pKa values of corresponding acids 

• es@mate carboca@on stabiliza@on 

• compare nucleophilicity of different nucleophiles 

• iden@fy reac@ve centers and preferred reac@on pathways (SN1 or SN2)


